feudo-vassalic institution, which emerged when the Frankish Empire was weakening. It gave the Europeans a new way to reorganize themselves against enemies outside and within. In the Zhou case, however, kinship worked in the place of contracted vassalage, and the Western Zhou state was formed by the extension of the royal lineage, assisted by a network of marriage alliances.

However, the fall of the Zhou capital in 771 B.C. and the collapse of the Zhou central power resulted in a historical environment somewhat similar to that from which the feudo-vassalic institution arose in medieval Europe. Studies of political institutions in the Spring and Autumn and early Warring States period point to several major new inventions: written legal codes such as the one cast on a huge bronze cauldron in the state of Zheng; contracted political loyalty sealed with the oath of alliance as indicated by the covenant inscriptions from Houma; a new type of estate to which there was attached not the right of administration or justice but only the right to derive revenue. All of these occurred at a time when the many states were unable to organize themselves according to the traditional lineage bonds.

Whether these new developments can be in any way related to a feudo-vassalic institution like that of medieval Europe deserves future study. Here, it should suffice to say that to identify the Western Zhou with the feudo-vassalic institution is to misunderstand the Zhou institutions and to misread its historical context. By freeing the Western Zhou from the “feudal” restrictions, we will have a better chance to understand the Western Zhou in its own right.

The name t'aiji tu 太極圖, or “Diagram of the Supreme Ultimate,” has come to refer to a number of Chinese cosmological images that explain the concept of a primal entity and its generative principle. Most of these t'aiji diagrams are associated closely with the individual thinkers who conceived or perpetuated them. But some entered the learned discourse on cosmology at unknown points in time, and their intellectual provenance is shrouded in myth and legend. The following study aims to clarify the provenance of one of these diagrams. It consists of the eight trigrams (bagua 八卦) surrounding a circle that illustrates the t'aiji (fig. 1). This circle is divided into two intertwined dark and light halves to represent yin and yang. Near its center are two dots, which are usually interpreted as depicting yang within yin and yin within yang respectively.

Ming scholars, who were the first to discuss the history of this diagram, generally considered it a divine revelation from the remote past and believed that sages such as the Duke of Zhou and Confucius still knew about its value for divination. The scholars recognized references to the diagram by these sages in certain passages of the Yijing. But at some later point in antiquity, they presumed the

This paper has gone through numerous incarnations and I would like to thank those who have critically commented on the manuscript and helped prepare it for submission to HJAS: Anne McGannon, Craig Clunas, Marion Lee, and the anonymous readers of HJAS.
Fig. 1. “The Taiji Diagram of the Heart of the Changes as Mysteriously Revealed by Fuxi,” from Lai Zhide, Yijing Laizhu tujie (1688; rpt., Chengdu: Ba Shu shushe, 1989), p. 53.

The Taiji Diagram's History

Diagram somehow vanished, for no references to it could be found in texts of the Han, Six Dynasties, or Tang periods. Song sources, on the other hand, seemed to indicate that the taiji tu had (re-)emerged in Daoist circles of the tenth century, and that it was transmitted in secret by alchemists as part of their esoteric doctrine. Yet because the diagram could not be verified in texts from this period, some of the more discriminating Ming reviewers concluded that it must have remained secret during the Song as well. Even the eminent and critical Qing scholar Hu Wei (1633-1714), who in the 1690s conducted one of the most comprehensive studies on the history of cosmological diagrams, subscribed to the secret transmission explanation. Hu's research is widely quoted today, and the taiji tu is therefore generally considered to have been passed down secretly by certain Daoist adepts and Neo-Confucian thinkers of the Song period before becoming more widely known in the fourteenth century. The critical opinions of later Yi Jing experts such as Zhang Huiyan (1761-1802), however, who felt that secret transmission theories were unconvincing attempts to come to terms with a disconcerting lack of tangible evidence, are rarely acknowledged. According to Zhang, the taiji tu grew out of the cosmological speculations of early Ming scholars.

Why is the early history of the taiji tu so elusive? And how can we locate the provenance of this image, which was celebrated by men such as Hu Wei as a revelation of the prime mysteries of the

2 For summaries of the most frequent versions of secret transmission theories, see Zhang Qicheng, ed., Yixue da cidian 易學大辭典 (Beijing: Huaxia chubanshe, 1992), pp. 486-111, and Wu Hua, ed., Zhouyi da cidian 周易大辭典 (Guangzhou: Zhongshan daxue chubanshe, 1989), pp. 719-20. The most recent Western contribution to the history of the image does not go beyond early Qing scholarship and mainly relies on the important study of Isabelle Robinet on the concept of taiji, which, however, is concerned with pre-Ming issues and only hints at the diagram's history in passing, see Stephen Little, Taoism and the Arts of China (Chicago: The Art Institute, 2000), p. 131; Isabelle Robinet, "The Place and Meaning of the Notion of Taiji in Taoist Sources Prior to the Ming Dynasty," History of Religion 29.4 (1990), 374-75, 386.
Yijing, of the Daoist Huang-Lao School, and of alchemical practice all in one? This study proposes to abandon the traditional search for a specific inventor, which has dominated explanations of the diagram's origin. Instead it will view the traditional explanations as evidence for the construction of an intellectual pedigree necessary for the diagram's acceptance in the cosmological discourse of the Ming and early Qing periods. The murkiness of the t'aiji tu's early history is seen here as the result of understanding the diagram as a primeval unit instead of recognizing its main constituent elements—the trigram circle and the dynamically divided yin-yang circle—as separate entities with an early history independent of each other. Categorically different in their pictorial qualities, these two graphic signs, it is argued here, communicate on different cognitive levels and originally functioned in disparate systems of visual expression and symbolic relevance. While the trigram circle was a prime symbol essential for divination and cosmological analysis, the yin-yang circle evolved in the context of decorative imagery and became a standard diagrammatic symbol with a characteristic iconography only after its combination with the trigram circle. Textual data point to the fourteenth century as the time when these two graphic entities were first combined, but the earliest material evidence readily available today dates only to the sixteenth century, reflecting the increasing popularity of the image toward the end of the Ming period.

THE ICONOGRAPHY OF THE TAIJI TU

Although its name as well as the design of the central circle differed somewhat from case to case in Ming and early Qing illustrations, the basic iconography of the t'aiji diagram remained the same (figs. 1, 11, 12, 19, 20, 21). It is always shown with the white half of the central circle towards the top, the whirl rotating clockwise, the two antithetical dots near the center, and the eight trigrams located in the same positions. A closer look at the symbolism of these specific iconographic elements shows that the design of the central swirls and the positions of the trigrams are carefully coordinated.

Fig. 2. The circular xiantian arrangement of the trigrams (Fuxi sequence).

In the t'aiji tu the trigrams are arranged according to the so-called xiantian 先天 or "prior to heaven" system. Unlike other ways of displaying the trigrams in a circle, the xiantian circle depicts the waxing and waning of yin and yang while at the same time pairing each trigram with its respective opposite across the circle (fig. 2). In this arrangement the trigrams are understood to illustrate the interaction between heaven and earth and the creative principles underlying the cycles of nature, such as the phases of the moon, the daily and yearly course of the sun, and the seasons. The trigrams in the xiantian circle are read in a specific sequence, which starts with qian 乾 at the top. Because broken lines symbolize yin and solid lines yang, qian represents pure yang, being made up of three solid lines. It stands for heaven, light, or the south, and is consequently placed at the top of the trigram circle, which can be read like a map. 6 The

6 Traditional Chinese maps usually depict south on top, north at the bottom, east on the left, and west on the right. In the 1688 illustration (fig. 1) the reading according to the directions of the compass is indicated in the text below the diagram. Lai Zhide 来知德, Yijing Lai Zhde liju (Chengdu: Ba Shu shushe, 1989), p. 553b.
xiántian trigrams are then read counterclockwise following their gradually decreasing yang valence, through dui 彗 and li 离, which both consist of two thirds yang and one third yin, to zhen 震, which consists of one yang line at the bottom and two yin lines at the top. Because these four trigrams all have a yang line at the bottom, they are considered to be essentially yang. The yin trigrams all have a broken yin line at the bottom; they are still read in decreasing yang increments, but now the sequence evolves in a clockwise sense starting with xun 环 in the southwest (top right) and going through kan 薦 and gen 聖 to kun 坤. This shift in direction is the result of having the yin trigrams arranged in opposition to the yang trigrams on the other side of the circle.

The same information of yin and yang waxing and waning in juxtaposition is also visualized in the design of the swirls of the central taiji circle. Yang decreases from the top to the bottom, while yin decreases from the bottom to the top. What the trigrams express in a conceptual and numerical manner, the central design visualizes in a much more illustrative mode. Essentially, the trigrams lay out in eight points what is traced as a smooth curve by the dividing line between the yin-yang swirls. Several Ming and early Qing depictions of the taiji tu explain the exact correspondence between the xiantian trigrams and the design of the taiji circle. The 1688 print illustrated in Figure 1 may serve as our reference here. Right next to the pure yang trigram qian at the top, the yang swirl is white all the way from the circle's edge to its center. The widest part of the black yin swirl, on the other hand, corresponds to the trigram kun, which represents pure yin, the earth, darkness, or north. The explanations of the correspondence between the swirls and the trigrams are written directly behind the trigrams. Underneath qian is written "pure white—pure yang," underneath kun, "pure black—pure yin." Next to dui in the southeast, the central circle matches the trigram's composition by showing "some black and a lot of white." The black and white dots near the center of the circle are seen as visual paraphrases of the trigrams li and kan, which mark the east-west axis. Li, in the east, consists of a yin line between two yang lines. Within the central circle, this configuration is represented by the black dot within the white tip of the yang swirl—or as the explanation in the 1688 print states, "li: yin is within two opposites—the black within white." The case of kan is just the opposite: the white dot is within the black tip on the left.

The connection Ming and early Qing commentators saw between the design of the central taiji circle and the yin-yang code of the xiantian trigrams must be recognized as a primary reason for the difficulties in determining the origin of the taiji diagram. For viewing the taiji diagram as a coherently designed unit allowed commentators to explain its provenance as the provenance of either of its components. The most influential of these explanations equated the discovery of the taiji tu with that of the xiantian trigram circle. Presumably because Chinese commentators considered the xiantian trigrams, not the taiji circle, to be the semantically dominant element of the taiji diagram. The determinant role of the trigrams is not surprising. The eight trigrams have enjoyed prime status as explanatory symbols of nature's concrete forces ever since the Yi Jing became the standard source for divination and cosmological speculation. The only other symbols of equal importance in Chinese cosmological reasoning were numbers. More telling than words, trigrams were seen as revelatory abstractions of the structure of the universe, as they were primary images (xiàng 象) designed at the beginning of civilization by Fu Xi 伏羲, primeval sage and China's first creator of culture.

7 This illustration appears in the Yi Jing Laizhu tujie, an enlarged edition of Lai Zhide's (1525-1604) Zhongyi jizhu 中国易注 of 1599. Cf. Larry James Schulz, "Lai Chih-te (1525-1604) and the Phenomenology of the "Classic of Change" (I Ching)" (Ph.D. diss., Princeton University, 1982), pp. 43, 251-56. See also figure 20.

8 Lai, Yi Jing Laizhu tujie, p. 553b.

9 This view is summarized and adopted, for example, in a very thorough and useful new study on the early reception of the Yi Jing by Hermann G. Bohn, Die Rezeption des Zhouyi in der Chinesischen Philosophie, von den Anfängen bis zur Song-Dynastie (München: Herbert Utz Verlag, 1998), pp. 138-39.

The \textit{yin-yang} valence of the \textit{xiantian} trigrams, and thus the specific sequence in which these trigrams are read, comes about through a process that is simultaneously arithmetic and graphic and is best explained through a diagram (fig. 3).\footnote{This diagram is based on the example in juen 10 of Huang Zongxi 胡宗義 (1610-1655), \textit{Song Yuan suet} 宋元學案 (Beijing: Zhonghua shuju, 1986), vol. 1:444, where it is credited to Shao Yong 邵雍 (1012-1077). Zhu Xi (1130-1200) had already described and illustrated this type of diagram, see Huang Zongxi, ibid. 1:387-91; Bohn, \textit{Die Rezeption des Zhouyi}, p. 449.} The diagram is read from the bottom up and shows \textit{taiji} separating into \textit{yang} and \textit{yin} (\textit{yang} is represented by a solid line on the right and \textit{yin} by a broken line on the left). These symbols are divided again into their respective \textit{yang} and \textit{yin} complements, and these are divided once more. The resulting trigram permutations are then read from bottom to top and from the bottom up and shows \textit{taiji} separating into \textit{yang} and \textit{yin} (\textit{yang} is represented by a solid line on the right and \textit{yin} by a broken line on the left). These symbols are divided again into their respective \textit{yang} and \textit{yin} complements, and these are divided once more. The resulting trigram permutations are then read from bottom to top and from

By the twelfth century the \textit{xiantian} trigram order was hailed as a sublime, naturally perfect arrangement, for it provided the most systematic known way of organizing the trigrams. To leading twelfth-century intellectuals, most notably Zhu Xi 朱熹 (1130-1200), this order, whether in its linear sequence or in the inverted pairing of the circle, represented a natural principle of organization, corresponding to the original conception of Fu Xi.\footnote{On this commentary, see Willard J. Peterson, "Making Connections: 'Commentary of the Attached Verbalizations' of the Book of Change," \textit{HJAS} 42.1 (1982): 67-115. For a summary of all the \textit{Yijing} appendices, see Fung Yu-lan, \textit{A History of Chinese Philosophy} (Princeton: Princeton University Press, 1952), vol. 1:379-95.} Southern Song
Neo-Confucian writings thus promoted it as a reflection of the most authentic layer of meaning encoded in the Yijing, implying that it also reflected most accurately the principles of nature. Although the Yijing actually makes no explicit reference to the xiantian sequence at all, late Song scholars nevertheless claimed that the circular xiantian arrangement was referred to in a passage of the Yijing's Shuogua commentary: “Heaven [qian] and Earth [kun] establish positions. Mountain [gen] and Lake [dui] circulate their material force. Thunder [zhen] and Wind [xun] give rise to each other. Water [kan] and Fire [li] refuse to destroy each other. In this manner the eight trigrams alternate with each other, so that to enumerate what has passed, one follows their progress, and to know what will come, one moves backward through them.”

This passage is far from clear, however, and interpreting it as a description of the xiantian circle—as happens in the still influential Yijing translation by Richard Wilhelm—is far from convincing. The order in which the trigrams are mentioned here does by no means correspond to their positions in the xiantian circle. Originally the passage may well have been understood as a guide to interpreting those four hexagrams which were composed of the complementary trigrams (i.e., nos. 12, 41, 32, and 63).

Among the several trigram sequences described in the Shuogua commentary, only one explicitly arranges the trigrams in a circle according to the points of the compass. Known since the Song period as the houtian 後天 or “After Heaven” order (fig. 4), this arrangement was understood to describe the cyclical changes of the seasons and days and, by extension, explain the workings of the world. The trigram zhen represents spring and the beginning; its position on the circle is east, and from there the sequence is read clockwise. The most recognizable elements in this constellation are li in the south and kan in the north, symbolizing fire and water respectively.

17 Shuogua, 3. The first publication which links this passage to the xiantian trigrams is apparently Zhu Xi, Zhouyi benyi 周易本義 (Siku quanshu edition), tu, 5. However, this book was first printed in 1265 and the authenticity of Zhu Xi’s authorship of the introductory illustration, where this statement appears, is uncertain. For Zhu Xi’s commentaries on this Shuogua passage, see Zhu Xi yulei, 77.1971-72, where no reference to the xiantian trigrams is found. For a fine survey of Zhu Xi’s approaches to the Yijing, see Joseph Adler, “Chu Hsi and Divination,” in Kidder Smith Jr. et al., Sung Dynasty Uses of the I Ching (Princeton: Princeton University Press, 1990), pp. 169-205.

20 Shuogua, 5. This passage reads in the translation of Lynn, Classic of Changes, p. 121 (quoted here without the annotations): “The Divine Ruler comes forth in Zhen and sets all things in order in Sun, makes them visible to one another in Li, gives them maximum support in Kun, makes them happy in Dui, has them do battle in Qian, finds them thoroughly worn out in Kan, and has them reach final maturity in Gen... . Zhen corresponds to the east... . Sun corresponds to the southeast. Li... . is the trigram of the south.” Cf. Legge, I Ching, pp. 425-26; Wilhelm, The I Ching, pp. 268-71. For an insightful exposition of possible meanings of this sequence based on explanations of the Yijing in the Han apocrypha, see Fung, A History of Chinese Philosophy, 2:102-6.
they are the only trigrams positioned opposite each other as a complementary pair, one representing *yang*, the other *yin*. The other trigrams, though not paired as opposites, are still ordered around *li* and *kan* so as to form a *yang* and a *yin* group respectively (fig. 4). Their *yin-yang* valence, however, is assessed according to a different, much simpler principle than that found in the *xiantian* system, simply working with even (i.e. *yin*) and odd (i.e. *yang*) numbers. To determine whether a trigram is *yin* or *yang* according to the *Yijing*, one counts the number of lines (a *yang* line is one, a *yin* line two), then tallies whether the total is an even or odd number.21

It was this trigram cycle that served as the standard directional and cosmological circular arrangement in early China. Referred to in Han texts as the “proper order,”22 it is, with minor variations the only directional trigram sequence found on archaeological material up to the early Southern Song period. It appears most frequently on objects whose function related closely to cosmological speculation, to the transcending of life and death, and the invocation of good fortune, such as late Han and Six Dynasties “diviner’s boards,”23 stone lids of tomb epitaphs from the late Six Dynasties through the Five Dynasties period (fig. 5),24 late Six Dynasties Buddhist stupas,25 and, most prominently, bronze mirrors dating

21 This manner of determining the *yin-yang* valence can be observed throughout the *Yijing*, see e.g. *Shugua* 10.
23 Two diviner’s boards, one from an Eastern Han tomb and the other in the Shanghai Museum datable to the Six Dynasties, have part of the *heutian* circle trigrams inscribed on them, see Lian Shaoming 邓学名, “Shipan zhong de shimen yu bagua” 式盤中的四門與八卦, *Wenwu* (1987.9): 34. For wider-ranging discussions of such boards, see the articles by Donald Harper, “The Han Cosmic Board (Shih),” *Early China*, 6 (1978/79): 1-10, Christopher Cullen, “Some Further Points on the Shih,” *Early China*, 6 (1980/81): 31-46, and Donald Harper, “The Han Cosmic Board: A Response to Christopher Cullen,” *Early China*, 6 (1980/81): 47-56. This circular trigram arrangement also appears on turtle-shaped inkstones made of earthenware. Such objects have so far been dated to the Eastern Han period, yet on stylistic grounds a dating to the tenth century seems more convincing. For an example of such an inkstone in the Minneapolis Institute of Art, see Ezekiel Schloss, *Art of the Han* (New York: China Institute in America, 1979), no. 52. For a comparable excavated Tang example, see Song Yanyan 宋燕燕, *Tangdai yishu* 唐代藝術 (Xi'an: Shaanxi renmin yishu chubanshe, 1991), no. 73.
from the eighth to the twelfth centuries (fig. 6). It was also still the norm at the Song court in 1118, when emperor Huizong 汴宗 (r. 1100–1125) began building his famous garden in the northeast of Kaifeng, which he named Genyue 閃岳, “Northeast Marchmount” or “Marchmount of Gen,” in accordance with the directional symbolism of the houtian 回天 trigrams. Only from the Southern Song period onwards is the xiantian 天圈 trigram circle also found as an occasional decorative symbol. Among the earliest archaeological evidence for the xiantian circle is a mid-thirteenth-century silver cup discovered in the tomb of a Southern Song scholar named Shi Shengzu 史增祖 (1191–1274) in Quzhou, Zhejiang (fig. 7A). As attested in Shi’s epitaph, he was an official of rank five with a vivid interest in the Yijing 宜經.

Aside from the archaeological evidence, there is ample textual evidence for the beginning popularity of the xiantian trigram circle during the Southern Song period. Don Wyatt has recently discussed some of the Song textual history of the xiantian diagrams and concluded that one of the earliest precise descriptions of the circular diagram was written around 1200 by Lou Yue 楼钥 (1137–1213), while less explicit but nevertheless unambiguous references to the image can also be found in Zhu Xi’s writings. Lou not only mentions the directional positions of all the xiantian trigrams, he also states that only "since the advent of our [Song] dynasty have there

[28] The houtian trigrams remained popular designs throughout Chinese history, especially on ritual objects.

Fig. 7. The decoration on a silver cup excavated in 1974 in the tomb of Shi Shengzu (1191-1274) in Quzhou, Zhejiang. From *Kaogu* (1983.11): 1005.

A: Outside wall: The xiantian hexagram circle with top band indicating the 64 hexagram combinations.

B: Inside bottom: Diagram with the Five Elements.

C: Outside bottom: Taiji circle.

THE TAIJI DIAGRAM’S HISTORY

Existed explanations of the xiantian and houtian. Wyatt perceptively recognized that intellectuals like Lou and Zhu were well aware of the relative novelty of the xiantian symbols, yet insisted on their primordial perfection and timelessness, which resulted in the paradoxical tension in their texts “between the simultaneous modernity and antiquity of the diagrams.”

Undoubtedly, the manufactured antiquity of the xiantian trigrams was a means of promoting the new arrangement. The proponents of the new xiantian system must have been acutely aware that this sequence caused a profound conflict in the interpretation of the individual trigrams. After all, both the xiantian and the houtian arrangements represent the cycles of nature in the same manner—as circles in which the trigrams are directionally positioned and grouped into a yin and a yang section. Yet in each arrangement the same trigrams possess contradictory meanings. Half of them have opposing yin-yang valences (li and dui are yin in the houtian cycle, but yang in the xiantian cycle; kan and gen are yang in the houtian cycle but yin in the xiantian cycle), and all of them represent different directions. Emphasizing the primordiality of the xiantian system was crucial for its adherents to have it accepted as an alternative mode of interpreting the signs of heaven. In fact, the adoption of the suggestive terms “Before Heaven” and “After Heaven” to distinguish the two trigram cycles was so effective that it eventually led to the anachronistic perception that the younger sequence was the older one, and vice versa.

31 Lou Yue, *Shao Kangjie guanwu bian* 邵康節觀物篇, translated after Wyatt, *Recluse of Loyang*, p. 199. Certainly by early Southern Song times the contrast between xiantian and houtian trigrams was well established, as seen for example in june 4 of Zhang Xingcheng’s *Yijing* (Shanghai: Shandong yinshuguan, 1935).

33 Presumably unaware of the archaeological evidence, Wyatt concluded that not only the xiantian but also the houtian diagram was novel to the Song philosophers, Wyatt, *Recluse of Loyang*, p. 199.

34 A temporal reading of the terms was emphasized through the association of the xiantian order with Fu Xi, and of the houtian order with the less ancient King Wen 王, the founder of the Zhou Dynasty. The *Yijing* originally used the terms xiantian and houtian to refer to two noble ways of behavior in relation to the knowledge gained from the oracle, not as two different ways of divining. *Wenwu*, hexagram 1: qian; Wyatt, *Recluse of Loyang*, pp. 194-5; Lynn, *Classic of Changes*, p. 138.
As is well known, Chinese historiography traditionally credits the philosopher and diviner Shao Yong 邵雍 (1012–1077) with the conception of the philosophical framework for the xiantian system. Twelfth-century scholars, however, including his son Shao Bowen 邵伯溫 (1057–1134), did not cite him as the inventor of the xiantian circle. Instead they reported that Shao derived his insights from already existing diagrams. These pre-existing, so-called xiantian diagrams 先天圖 were thought to have been transmitted to Shao Yong through his teacher Li Zhicai 李之才 (d. 1045), from whom they were traced back via Mu Xiu 穆修 (979–1032) and Zhong Fang 徐宗方 (d. 1014) to the Daoist monk Chen Tuan 陳抟 (872/895–989). Chen, a heavily mythicized figure, takes the crucial position of a spiritual inheritor of the Neo-Confucian Daoxue tradition, which credits him with first making public certain elements of esoteric Daoist knowledge previously developed and transmitted within alchemist traditions. He is said to have employed cosmological charts and images, tu 圖, for meditative purposes—an activity which, by the tenth century, had of course become a well-established Daoist and Buddhist practice. Chen’s few known writings confirm that he was well acquainted with the processes of alchemy, and also that he concerned himself with diagrams.37

We do not know what Chen Tuan’s xiantian tu looked like, as none of his discussions of such a diagram survives with illustrations.38 Song

35 The term xiantian may only have been assigned to Shao’s cosmology by his immediate followers, see Wyatt, Relics of Loyang, pp. 179ff. There is abundant literature on Shao Yong and his xiantian theory. Aside from Wyatt’s recent book, see e.g. Fung, A History of Chinese Philosophy 2:451–74; Wing-tsit Chan, A Sourcebook in Chinese Philosophy (Princeton: Princeton University Press, 1963), pp. 481–99; Anne D. Birdwhistell, Transition to Neo-Confucianism: Shao Yang on Knowledge and Symbols of Reality (Stanford: Stanford University Press, 1988); Smith and Wyatt, “Shao Yang and Number.”

36 For quotes and literature on this lineage, see Fung, History of Chinese Philosophy, 2:440; Livia Knaul, Leben und Legende des Ch’en T’uan (Frankfurt a.M./Bern: Peter Lang, 1981), p. 34; Birdwhistell, Transition to Neo-Confucianism, pp. 207–8; Smith and Wyatt, “Shao Yang and Number,” 110; Wyatt, Relics of Loyang, p. 199. Regarding Chen’s dates, Knaul, Leben und Legende, p. 145, mentions various Daoist records according to which Chen was 118 tai at his death, which would indicate a birth year of 872. Traditionally his birth year is given as 895.

37 Knaul, Leben und Legende, pp. 35–6. Also see the special issue of Twist Resources 2:1 (1990), subtitled A Memorial to Chen Tuan, especially the contributions by Livia Kohn, “The Life of Chen Tuan After the History of the Song,” and “Chen Tuan in History and Legend,” 1–7, 8–33.

38 Recent discussions of Chen Tuan’s diagrams, such as the one by Li Yuanguo, are based on traditional attributions only. Li, for example, does not discuss the historical authenticity of the diagrams he ascribes to Chen Tuan, see Li Yuanguo: “Chen Tuan’s Concepts of the Great Ultimate,” Twist Resources 2:1 (1990): 32–53, esp. 46ff.

39 Zhu Boku 朱伯康, Yiyou zhexue shi 易學哲學史 (Beijing: Huaxia chubanshe, 1995), 2:11–12.

40 On Shao Yong’s secretive treatment of his xiantian fortune-telling skills, see Wyatt, Relics of Loyang, pp. 202–4.

41 See notes 23, 24, 25 and 26.

particularly important predecessor of the xiantian circle, for Zhu Xi explicitly refers to it when discussing the provenance of the xiantian tai. The book, attributed to a second-century Daoist, Wei Boyang 魏伯陽, has a very obscure textual history. The oldest extant version was produced in 947 and commented by Peng Xiao 彭曉 (?-955), a high official active in Sichuan under the Later Shu dynasty (934-965). Parts of the text certainly existed since the late Six Dynasties, but much was emended during the Tang and Song, and no standard edition was ever established. In the Tang and Song, but much was emended during the Tang and Song, and no standard edition was ever established. In the the Cantongqi we find a combination of Yijing principles and alchemic methods. In one section the trigrams are correlated to the phases of the moon, most likely in order to indicate different stages and intensities of firing during the alchemic production of elixirs. The cycle begins in the east with zhen, and continues through dui, qian, xun, and gen to kun (fig. 8). These six trigrams are read from the bottom line up; in this way yang lines increase until, after the moon is full on the fifteenth day of the month, yin lines begin to increase from the bottom up. Li and kan, the trigrams traditionally representing the sun and the moon and hot and cold, are excluded because the cycle explains their waxing and waning. According to Fung Yu-lan, they are to be imagined within the circle.

The Cantongqi also contains other concepts which foreshadow the later directional xiantian trigrams, such as the emphatic use and linking of the trigram pairs qian-kun and li-kan. Li and kan here are understood as a secondary display, er yang 二阳, of qian and kun, representing the same creative principles. But while these pairs in the Cantongqi are intended to explain the human body and various alchemist and meditative practices, the Neo-Confucian reader was able to discern in them the directional xiantian patterns. In his annotated edition of the Cantongqi, Zhu Xi explicitly bases his interpretation of these two trigram pairs on the directional xiantian arrangement, even though the original text never mentions north and south, nor left and right.

To be sure, medieval alchemist books such as the Cantongqi do

45 Zhu Xi, Zhuzi yueli, 65.1617.
47 For a Daoist reading of the Cantongqi, see Yu Yan's (1258-1314) edition Zhouyi cantongqi fahui; Zhouyi cantongqi feizhang zhu 周易參同契發微; 周易參同契修改注 (Tianjin: Tianjin guli chuban she, 1988), p. 11. The explanatory parts in this passage may well have been emendations by Peng Xiao or some other tenth or eleventh-century commentator.
48 In Zhu Xi's edition of the Cantongqi, the first chapter states for example: "Heaven and earth establish the positions, and the changes take place between them. Heaven and earth mean qian and kun. Establishing the position means arranging the position of a yin and yang pair. The Yijing speaks of kan and li. Kan and li are the second display of qian and kun. The lines of the second display do not have a definite position. They float to all six vacanies." Wu Shuping 武樹平, comp., Zhouyi cantongqi kouyi 周易參同契考異, Zhouyi cantongqi fahui 周易參同契發微, 周易參同契修改注 (Tianjin: Tianjin guli chuban she, 1988), p. 11. The explanatory parts in this passage may well have been emendations by Peng Xiao or some other tenth or eleventh-century commentator.
49 For a Daoist reading of the Cantongqi, see Yu Yan's (1258-1314) edition Zhouyi cantongqi fahui 周易參同契發微 (preface 1284) in Zhongguo Daotan (hereafter Daozang) 7, houyi cantongqi kaoyi, Zhouyi cantongqi fahui 周易參同契考異, 周易參同契修改注 (Tianjin: Tianjin guli chuban she, 1988), pp. 625-627, or the commentary by Chen Xianwei 陳先為, Daozang, vol. 628.
50 Zhu Xi, Zhouyi Cantongqi kouyi, shangbian (first published 1197), 4a, in Wu, comp., Zhouyi cantongqi kouyi, pp. 7-8. The Cantongqi begins like this: "Qian and kan are the gate and the door to the changes, they are the father and mother of all trigrams. Kan and li assist them like a wall revolving around a nave on an upright axle tree. These two trigram pairs are like a bag and a robe." Zhu Xi reinterprets this clearly three-dimensional illustration (surely written with the human body in mind) in the following two-dimensional manner: "The position of qian and li is at the top and at the bottom, while kan and li ascend and descend between them. Therefore it is called 'changes.' In the xiantian position qian is south, kun north, li east, and kan west. That is why this image has the form of a city wall and its rising and descending sides are like the revolving wheels on the nave of a chariot axle—on the bottom and one at the top."

Fig. 8. The Phases of the Moon, from Yu Yan (1258-1314), Zhouyi cantongqi fahui (Wenyang edition).
not contain the *xiantian* sequence itself, but they clearly indicate that
certainly by the tenth century the groundwork had been laid for the
xiantian system. Considering the new functions assigned to the tri-
grams in alchemist literature and the popularity of the *houtian* circle
during that period, Shao Yong, or his teacher Li Zhicai, must have
been able to conceive of the *xiantian* sequence without much diffi-
culty. There are no indications in Five Dynasties or Song sources
that the formation of the *xiantian* trigram circle came about in con-
junction with a dynamically divided *yin-yang* circle, comparable to
the one we find in the *taiji* diagram. The texts explain the genesis
of the *xiantian* circle entirely in terms of trigrams and numbers—
symbols whose code was recognized as basically arithmetic.

There is no evidence from the Song period that the *xiantian*
trigrams at the time had any connection to a *yin-yang* circle with
swirling halves. The mid-thirteenth-century silver cup from Shi
Shengzu's tomb, for instance, still combines the *xiantian* circle (fig.
7A) with the kind of *yin-yang* circle (fig. 7C) that had become pop-
ular through Zhou Dunyi's *humen* (1017-1073) classical *taiji* diagram
(fig. 9). That circle is static and does not reflect the waxing and
waning of *yin* and *yang*. Even Yuan scholars apparently did not feel
compelled to combine a dynamic *yin-yang* circle with the *xiantian*
trigrams, as is suggested by a short treatise entitled *Bao yihan sanmi
jue* 肖一簡三秘訣, written by the Quanzhen 乾全 master Jin Yueyan
金月岩 (also known as Jin Pengtou 金蓬頭, 1276-1336) and his assis-
tant, the famous scholar-painter and Daoist practitioner Huang
Gongwang 黃公望 (1269-1354). Here the trigram circle is discussed
as a sequence from *yang* to *yin* (fig. 10). The trigrams are numbered,

51 The *taiji* circle is chased on the outside bottom of the cup. The inside bottom of the cup
shows the diagram of the relation of the Five Elements, also taken from Zhou Dunyi's *taiji
tu*. See note 29. For thirteenth-century textual sources where the *xiantian* circle is discussed
as containing *taiji*, visualized by Zhou's *taiji* circle, see Robinet, "Place and Meaning of the
Notion of Taiji," p. 399.

52 *Bao yihan sanmi jue* in *Daozang*, 321:1a. The *Bao yihan sanmi jue* is a Daoist text that com-
binds explanations of neidan practices with traditional cosmological theories based on the *Yijing*.
Like the *Cantongqi*, it appealed to classically educated scholars, and was in fact conceived by
two scholars of the Quanzhen sect who rigorously promoted a syncretistic philosophy. Cf.
A. John Hay, "Huang Kung-wang's "Dwelling in the Fu-ch'un Mountains": The Dimensions
of a Landscape" (Ph.D. diss., Princeton University, 1978), pp. 11-12; Caroline Gys-
pp. 35-51.

Fig. 9. *Taiji* Diagram, redrawn after Zhou Dunyi (1017-1073), from Joseph Needham, *Science
and Civilisation in China*, vol. 2, sections 8-18 (Cambridge: Cambridge University Press, 1956),
p. 461.
and the dynamic of change they express is indicated in their center with an angular s-line. The text explicitly states that this line describes the changes. Nevertheless, the line marks only six instead of eight corners, and thus does not exactly replicate the dynamic stages described by the trigrams. Assuming that the fifteenth-century Daozang edition, which makes this book available, did not gravely distort the fourteenth-century Yuan original, one cannot but suspect that the authors simply were unaware of the dynamically divided yin-yang circle; otherwise they would certainly have employed it instead of the unconventional and unsystematic line.

Ming and early Qing authors were quite mystified when it came to determining why early depictions of the xiantian trigram circle never included the taiji circle with the characteristic, interlocking yin-yang swirls. None of the major compendia, in which the taiji could be expected, included it. It appears neither in the Xingli daquan, the standard Ming compilation of orthodox texts of, and commentaries on, Song Daoxue philosophy, nor in the Daoist Canon published in 1444 and 1445. Its earliest appearance was discovered by Hu Wei at the end of the seventeenth century in an etymological study called Liushu benyi written by the Zhejiang scholar Zhao Huiqian (1351–1395). That book was first printed in the Hongwu era (1368–1399) and has four prefaces by early Ming literati. Two of the prefaces are dated; one was written by Bao Xun in 1380, one by Zhao himself in 1378. No Hongwu edition, however, appears to have survived. The earliest extant versions date to 1517 and 1520 respectively, and thus are over a century younger than the original.

55 Baoyihan sanmi jue, 1b.
56 My thanks to Peter Ditmanson for pointing out this compilation as a potential source.
57 My thanks to Peter Ditmanson for pointing out this compilation as a potential source.

THE TAIJI CIRCLE

Ming and early Qing authors were quite mystified when it came to determining why early depictions of the xiantian trigram circle never included the taiji circle with the characteristic, interlocking yin-yang swirls. None of the major compendia, in which the taiji could be expected, included it. It appears neither in the Xingli daquan, the standard Ming compilation of orthodox texts of, and commentaries on, Song Daoxue philosophy, nor in the Daoist Canon published in 1444 and 1445. Its earliest appearance was discovered by Hu Wei at the end of the seventeenth century in an etymological study called Liushu benyi written by the Zhejiang scholar Zhao Huiqian (1351–1395). That book was first printed in the Hongwu era (1368–1399) and has four prefaces by early Ming literati. Two of the prefaces are dated; one was written by Bao Xun in 1380, one by Zhao himself in 1378. No Hongwu edition, however, appears to have survived. The earliest extant versions date to 1517 and 1520 respectively, and thus are over a century younger than the original.

55 Baoyihan sanmi jue, 1b.
56 My thanks to Peter Ditmanson for pointing out this compilation as a potential source.
57 My thanks to Peter Ditmanson for pointing out this compilation as a potential source.
Fig. 11. “River Diagram of the Spontaneous Process of Heaven-and-Earth,” from Zhao Huiqian (1351-1395), *Liu shu benyi* (1520 Hu Donggan edition).

The taiji tu appears near the beginning of the Liushu benyi in an illustrated introductory section (tukao 图考) on the origin of written Chinese characters. In the tradition of classical Yijing interpretation, Zhao explains that in the earliest forms of writing the trigrams and the characters for the natural elements such as fire, water, and wind were written the same way and therefore must have the same origin. Linking his paleographic observations to the xiantian triogram charts of the Song, Zhao correlated the origin of the Chinese script with the origin of cosmological symbols and diagrams, and fittingly began his section of tables and charts with our taiji diagram. His illustration is entitled tianyi xian tu 天意嫌疑圖, “River Diagram of the Spontaneous Process of Heaven-and-Earth.” To Zhao Huiqian this was a primal image of natural creation comparable to one of the divinely revealed charts of mythical times, the famed hetu 河圖, or River Diagram. After associating his diagram to such divine images he provides the earliest known explanation of its provenance: “As for this diagram, it has long been said that Cai Yuanding received it from a recluse in Shu [Sichuan]. He kept it secret and did not transmit it, so that even Master Zhu [Xi] did not see it. Now I have obtained it from Mr. Chen Bofu and take pleasure in its perfection. It has the Great Ultimate containing yin and yang, and yin and yang containing the Eight Trigrams. The subtlety of spontaneous process truly is the origin of written characters of all ages and the pivot of creation. How divine it is!”

Zhao here discusses the image not as an illustrative diagram in a book, but rather as a rare physical object, an old painted chart which fell into the hands of a nowadays obscure collector Chen and which supposedly had a history reaching back to the scholar Cai Yuanding 蔡元定 (1135-1198) and beyond. Cai was one of Zhu Xi’s close friends and most outstanding pupils, and also one of the main commentators of Shao Yong’s basic work, the Huangji jingshi 黃帝經世. Moreover, he is traditionally considered the person responsible for compiling the charts that now form the first two introductory chapters of a heavily augmented and commented later edition of Shao’s book. But a taiji diagram with the dynamically divided circle never appeared in any known Huangji jingshi edition. Zhao Huiqian’s comment in fact suggests that he was not aware of any substantial literary history of this image, as he describes it as an antique chart which, although known to a small circle of local scholars, had not yet been widely publicized. Quite possibly because of the relative novelty of this diagram, Zhao published it with precise annotations on how to understand its design. To Zhao, who felt that the central circle expressed perfectly the meaning of the xiantian triagram circle, it must have seemed most improbable that Cai Yuanding should have been unaware of it. And so we once again encounter the secret transmission theory already employed in explanations of the xiantian tu—this time placed into the twelfth and thirteenth centuries.

Zhao, in reconstructing the provenance of the picture, may have recollected parts of a story that had already been circulating for a
century or so. Around the beginning of the Yuan period, Yuan Jue menjian (1266–1327) makes mention of three charts in the possession of the Southern Song official Xie Zhongzhi 謝仲直 (1226–1289). Those charts supposedly could also be traced back to Sichuan, a region where Chen Tuan had spent some of his younger years. Yuan Jue explains that Zhu Xi, eager to find out what Chen Tuan's charts really looked like, had Cai Yuanding search for them in Sichuan. Cai supposedly returned with three charts, but none of them were made public. The charts are said to have remained in the Cai family collection for several generations, until they were given away and eventually came into the possession of Xie Zhongzhi. Hu Wei seems to have been the first to explicitly connect this story to the image in the Liushi benyi, but whether one of these three thirteenth-century images actually looked like the one in the Liushi benyi we cannot know.

In the late eighteenth century the young Zhang Huiyan (1761–1802) wrote an astute comment on Hu Wei's findings and rejected the Cai Yuanding transmission theory altogether for lack of evidence. Instead, he concluded that diagrams like the one in the Liushi benyi originated from the cosmological speculations of early Ming scholars. Unfortunately, his insightful little book on this subject, Yitu tiaobian 易圖條辨, has only recently received wider recognition. Zhang's drastic revision of the idea that twelfth- and thirteenth-century intellectuals, especially those steeped in Shao Yong's xiantian theories, must have been familiar with the taji diagram, can be supported by examining more closely the pictorial nature of taji diagrams in Song cosmological discourse. Taji depictions of unambiguous Song date can be differentiated from the yin-yang circle of the Liushi benyi not only on a conceptual but also on a perceptual level.

Song cosmological diagrams employ only a very limited vocabulary of visual signs consisting of writing, trigrams, numerical signs, circles, boxes, and lines linking individual parts of a chart. These signs are arranged solely according to content, and aesthetic considerations play no role at all. The taji is variously represented by a simple circle, a circle with a central dot, numerical signs (fig. 13), concentric circles (fig. 14), or a circle split into the semicircular versions of the trigrams li (left) and kan (right) respectively (fig. 9), as in the classical taji diagram of Zhou Dunyi (1017–1073). In all these cases the pictorial signs are abbreviated, devoid of representational elements, and so general that they usually cannot be comprehended without textual explanation. The only significant recognizable symbols aside from text are numbers and the binary line statements that compose the trigrams. Conceptually, the Song taji diagrams thus functioned within the same framework we have already encountered for the xiantian diagrams: their main information was defined textually in relation to the Yijing and through the arithmetic qualities of the trigrams or of numbers. The yin-yang circle of the taji tu, on the other hand, communicates on an essentially geometrical basis. Its two curved, interlocking geometric shapes depict a rotating, self-creating cycle of complementary opposites, of mutually dependant entities whose beginnings are the other's endings. The interaction of dual opposites in this particular design is self-evident; the cosmological symbolism of yin and yang—and especially of their waxing and waning—is not. This symbolism requires explanation such as is provided by the xiantian

63 Compare the examples, including a numerical taji tu based on Chen Tuan's explanations in the Lehen zuo 老論左 in volume 143 of Wuqi beichao Yijing jicheng 無期背朝易經集成 (Taipei: Chengwen chubanshe, 1975). See also the works by the Yuan author Zhang Li 張理, Zhouyi tushuo waibian 周易圖説外編, shang 3, Dongzang, vol. 69; and his Da Wuqi beichao yuxue congshu 大易象數鉤深圈, shang 10a. In Dongzang, vol. 70; for reprints see also Wuqi beichao Yijing jicheng, vol. 143.

trigrams or additional text. Seen individually, the two halves are basically meaningless shapes, likened by many Chinese commentators to fish (or commas in Western literature). In contrast, the only other taiji circle that depicts yin and yang, the one made famous by Zhou Dunyi (fig. 9), uses traditional, precisely defined symbols of yin and yang: the trigrams li and kan. 71

Curiously, Zhou Dunyi’s taiji circle fails to represent visually the dynamics of yin and yang as described in the textual commentary appended to the diagram. 72 Zhou’s static design simply serves as a reminder that yin and yang emerge from the taiji, but does not attempt to illustrate the interaction of one taking shape as a result of the characteristics of the other. Zhou communicates this creative process verbally. To the left of the circle he writes: “yang—motion,” to the right “yin—repose.” The concept of yin “being the root” of yang and vice versa is explained more elaborately in the commentary. One wonders why Zhou Dunyi chose a static taiji symbol. If the dynamic taiji circle could have expressed his ideas much more emphatically. Was it because he was not aware of a dynamic taiji circle? Possibly. Or did he know of the latter, but considered it inappropriate as a diagrammatic sign? Most likely not. For while some of the images he was familiar with may have resembled the design of the yin-yang circle found in our taiji tu, no Song scholar would

71 Li and kan, symbolizing fire and water, are the only complementary trigrams in the hou-tian circle and it may well be because of their positions in that circle that they came to represent the juxtaposed yang and yin sections in other circular yin-yang depictions. The li kan circle has been traced back to the Tang period. It appears without a white circle in the center in one of the texts of Zongmi ạo密 (780-841), the fifth patriarch of the Huayan School of Buddhism. Zongmi used it to denote alaya-vajnana, the store-consciousness in which the true and the false, i.e. enlightened and phenomenal existence are blended. The alaya-vajnana produces all phenomenal existence, yet it never distinct or apart from the true, enlightened existence. Cf. Lackner, “Die Verplanung des Denkens,” 142-43; on the alaya-vajnana and other ideas of dualism current in medieval Chan and Huayan Buddhism, see Alfonso Verdu, Dialectical Aspects in Buddhist Thought. Studies in Sino-Japanese Mahayana Idealism (Lawrence Center for East Asian Studies, University of Kansas, 1974).

72 In Wing-tsit Chan’s translation: “The Great Ultimate through movement generates yang. When its activity reaches its limit, it becomes tranquil. Through tranquility, the Great Ultimate generates yin. When tranquility reaches its limit, activity begins again. So movement and tranquility alternate and become the root of each other, giving rise to the distinction of yin and yang, and the two modes are thus established.” Chan, A Sourcebook in Chinese Philosophy, p. 463. See also Fung, History of Chinese Philosophy, p. 435; and Julia Ching, The Religious Thought of Chu Hsi (Oxford: Oxford University Press, 2000), p. 22.
have read them as symbols of the *taiji*, or of *yin* and *yang* splitting from the *taiji* as the two creative modes.

DEPICTIONS OF COSMIC ENERGY

Between the ninth and fourteenth centuries, images of circles divided into two halves by an s-line or an inverted s-line were by no means abstractions of cosmological concepts, comparable to the symbolic graphs used in Song diagrammatic discourse. On the contrary, they were representational depictions of the concrete physical world and formed part of larger pictorial contexts. They appear only rarely; being small, they are hidden away within the surrounding imagery. No common design elements other than some form of s-shaped dividing line links these circular motifs (figs. 15, 16, 17). And features such as two central dots or the contrasting colors and particular shape of the *yin-yang* swirls—iconographic characteristics of the *taiji* circle seen in Ming and Qing illustrations—are conspicuously absent. In fact, until about the twelfth century, a common iconography was not established through the design within the circle but through additions outside it. Most commonly, flaming halos (and sometimes also mythical animals) identify these circular designs as blazing spheres and discs. Clearly, the specific design of such spheres was determined by an artisan according to aesthetic considerations, not by an intellectual to clarify cosmological speculations.

Early images of flaming spheres divided into two (and sometimes three) curved sections appear in northern China, most prominently on ritual utensils from the Liao empire (907–1125) (fig. 16); their meaning is, however, still largely unstudied. The earliest datable example I have been able to trace is on the lid of a silver reliquary...
manufactured for the Tang emperor between 871 and 874 to enshrine a finger bone of Buddha Śākyamuni (fig. 15). The gem is depicted within slender streaks of clouds with two dragons swirling around it. The dragons' bodies and postures are identical, their heads thrown back, snouts gaping at the sphere between them. The combination of the antithetical elements water and fire, depicted as clouds and halo, and the polarized positioning of the dragon pair leave little doubt that we are presented here with the theme of creation through the interaction of opposite entities.

Yin and yang meet as a roaring clash of elemental powers, their transformational force regulated only by the ornamental symmetry of the design. The cosmological significance of this imagery on the lid is further emphasized by the iconography on the sides of the reliquary, where the four cardinal directions are indicated through the depiction of the four Heavenly Kings (tianwang 天王). It is a Buddhist cosmology, to be sure; Vaiśravana, the King of the North, resides on the front panel of the casket.

Having recognized the cosmological symbolism inherent in the lid's main imagery, can we assume that the bipartite design of the gem, because it mirrors the inverted and thus dynamic juxtaposition of the dragons, itself represents the yin-yang dualism? The answer is yes, but it requires explanation. Given the specific purpose of the reliquary, we may identify the flaming gem as a representation of the cintāmani, a wish-fulfilling gem variously said to be obtained from the dragon-king of the sea, a dragon-fish (makara), a bird-king (garudā), some other mythical animal, or from the relics of the Buddha. Because we know from archaeological evidence

Fig. 16. A composite drawing by the author of the silver funerary crown of Liao prince Xiao Shucheng (d. 1017/18). Excavated in 1986 in the tomb of the Princess of Chen in Naiman Banner, Zhelimu League, Inner Mongolia.

Fig. 17. A drawing of a lacquered box excavated in 1979 in Zhenjiang, Jiangsu. Southern Song, thirteenth century. From Wenwu ziliao congkan (1987.10): 186.
that the liturgical aspects of worshipping this particular Buddha relic were entrusted to chief priests of the Esoteric School,\(^79\) the various types of *cintāmani* recorded in Esoteric texts of the eighth and ninth century are particularly relevant. In those texts one can indeed find descriptions of gems considered to be dualistic embodiments of Buddha's transcendence, their wish-fulfilling creative power being explained by their bipartite nature. The eminent Japanese patriarch Kūkai 空海 (774–835), for example, who introduced the Chinese esoteric teachings to Japan, discussed the view that the *Kukai* 74 (774-835), for example, who introduced the Chinese esoteric teachings to Japan, discussed the view that the *cintāmani* consists of two antithetical entities. He corrects a traditional notion that a true wish-granting gem is made from dragon's liver and phoenix's brain, and explains that the duality in fact reflects the laws of spontaneous process inherent in the Thadāgata's body.\(^80\) It is thus quite possible that the priest who conceived of the decorative scheme on the Famensi reliquary recognized the notion of *jin* and *yang* in the *cintāmani*. In this way, the gem could be interpreted as a magic symbol not only of Buddha's central position in the universe, but also of his transformational power, which transcends the cycle of life and death and promises spiritual salvation in a future existence.

A similar cosmological symbolism was most likely intended in Liao depictions of the flaming sphere, which are usually accompanied by a pair of dragons or phoenixes (fig. 16). Yet, given the representational nature of these gems, their interactive halves should be understood as concrete rather than abstract symbols of *jin* and *yang*. The most obvious choice for such representational symbols in a flaming sphere would have been the contrasting elements water and fire. Support for this proposed reading is found, for example, in a flaming gem with a red and a blue or green half that appears

\(^80\) Goypge 萊翁, T. 77:2431, 413a. One of Amoghavajra’s (705-774) sutras similarly recognizes the interaction between *jin* and *yang* in two types of *cintāmani* and expresses this in terms of the polarity of water and fire. Amoghavajra states that *cintāmani* produced by people are thought to embody the virtue of fire, while those which come from dragon palaces are endowed with the virtue of water. Rayi baisha zhanluan minmi xianshen cheng fo jinlu shou wong jing 如意寶珠轉輪經身成佛輪呪咒經, T.19:961, 332a.

on top of a sedan chair in a Liao tomb mural in Kulun painted around 1080.\(^81\)

By the thirteenth century the choice to divide a circle into two swirls had become a more widespread design principle, now being used also in southern China. A circular lacquered beauty case with two interlocking inserts discovered in a thirteenth-century Southern Song tomb (M6) in Zhenjiang, Jiangsu, may exemplify the gradual abstraction of this design principle from representational depictions into simple geometric forms (fig. 17). Meanwhile the tradition of depicting concentrated cosmic energy continued—be it in images of flaming balls or swirls of clouds. Chen Rong’s 陳容 (*jinsi* 1235, d. after 1262) famous handscroll of *Nine Dragons* 九龙图 in the Museum of Fine Arts, Boston (fig. 18), for example, presents both these images in the exact center of the composition. A great vortex of intertwining dark and light clouds is unambiguously intended to depict nature’s creative material force (*qi* 氣). The contemporary colophons make several references to it. Right next to this young, “inexperienced” dragon has managed to grab a smooth gem with a flame shooting forth that is associated with this center of energy.\(^82\)

It seems likely that by the fourteenth century, images of ethereal whirls and bipolar gems had become stock depictions of organic cosmic energy. The presence of such imagery in the corpus of identifiable visual forms appears to have created the necessary preconditions for the conception of a two-dimensional abstract *yin-yang* circle with intertwining black and white halves which could be combined with the *xiantian* trigrams. The Siku quanshu edition of the *Liushu benyi*, in fact, preserves a design of the *tianli ziran hetu* (fig. 12) which appears much more like a whirl than a precise translation of the *yin-yang* valence expressed through the *xiantian* trigrams.

Perhaps the most striking conclusion to be drawn from the above brief survey of early circular designs divided into two interlocking halves is that circles with two colored halves and two antithetical dots do not seem to appear before the Ming period. The design in fact begins to proliferate in decorative as well as literary contexts only in the sixteenth century. As this section will show, it was only during the later half of the Ming period that our specific taiji circle became truly iconic, that is, widely recognized as a cosmologically meaningful design. The new icon was the result of the circular whirling image of creative energy merging with the xiantian trigram circle into one cosmological diagram. As a result of this combination generic images of interlocking swirrs were modified into the specific abstraction of a circle with a clearly defined appearance that would eventually retain its abstract cosmological symbolism even without the trigrams.

Judging from the Liushu benyi, it was during the fourteenth century that a small number of intellectuals began to abandon concerns over the diagrammatic usefulness of an organically designed jin-jang circle. However, because this circle evolved from a pictorial tradition, and because its geometrically complex design contrasted sharply with the numerically encoded trigrams, its transfer into diagrammatic discourse hinged upon a systematizing and rationalizing of the design. This need for explanation is amply demonstrated by the annotations in the Liushu benyi and later illustrations on how to understand the relationship between the circle’s design and the xiantian trigrams. The subjectivity of the design, particularly the way the swirls intertwine at the center of the circle, must have been recognized as mathematically inaccurate and quite different from the more precise symbolic codes of trigrams and numbers. Indeed, the history of the taiji image in the Ming period is to a large extent dominated by scholars trying to come to terms with this inaccuracy. To remedy the subjectivity of the circle’s design, some scholars of the late sixteenth and early seventeenth centuries began to reconstruct it, basing themselves on the increasingly familiar methods of geometry, as introduced most influentially by the Italian missionary Matteo Ricci (1552-1610). The result of this new geometric
approach was a distinction between what may be labeled an “objectively” and a subjectively designed version of the taiji tu.

Such late Ming approaches are best exemplified in the Tushu bian 圖書編 a massive, encyclopedic collection of diagrams and writings drawn from over two hundred earlier publications. Zhang Huang 張濱 (1527-1608) compiled the book between 1562 and 1585 in an attempt to sort out the true Confucian illustrative materials from those of Daoist and Buddhist provenance. Because of financial constraints, he never published his seven-thousand-page compendium; only after his death was one of his disciples able to afford the cost of having the wood blocks carved, and the book could finally be printed for the first time in 1613.

Zhang Huang included two images of the dynamically divided circle surrounded by the xiantian trigrams. In one illustration the circle is subjectively designed and the image is called “Ancient taiji Diagram” (gu taiji tu 古太極圖) (fig. 19); in the other the circle is constructed with a sensitivity to geometric principles in order to match more precisely the yin-yang flux indicated by the trigrams (fig. 20). This latter image, which we shall discuss first, is called “Diagram of the Trigrams Drawn Prior to Heaven” (xiantian huagua tu 先天卦圖). The circle here is divided into four sectors and the intertwining yin and yang halves are aligned along the diagonals, resulting in a sliding join rather than a hooked one as seen in the gu taiji tu (fig. 19).

The quarters of the circle represent the four xiang, the second stage in the binary exponential process which links yin and yang to the eight trigrams. The four xiang are called greater or lesser yin and yang respectively (cf. fig. 3). But while this manipulation of the circle helped to clarify to some extent the joining of the two halves in the center, the splitting of yin and yang is neither visually convincing, nor do the positions of the resulting four xiang appear to be related to those of the trigrams. The sectors are merely superim-

83 The first Western author to point out the Tushu bian in connection with the history of the taiji tu was Joseph Needham: “The Institute’s Symbol,” in Biologist. Journal of the Institute of Biology 24, (1977): 71-72.
84 Goodrich and Fang, Dictionary of Ming Biography, vol. 1:83.
85 The bad quality of the print is due to a flaw in the 1613 printing block—a wide scratch near the trigram kan on the right. The same flaws seen in the Columbia University version also appear in the copy reprinted in 1971 by Chengwen chubanshe in Taipei.

Fig. 19. “Ancient Taiji Diagram,” from Zhang Huang, Tushu bian (1623), 1:1a. Courtesy of C.V. Starr East Asian Library, Columbia University.
Fig. 20. "Diagram of the Trigrams Drawn Prior to Heaven," from Zhang Huang, Tushu bian (1623), 2:5a. Courtesy of C.V. Starr East Asian Library, Columbia University.

posed over the circular design, and information about the four yang must be conveyed textually.86

In seventeenth-century adaptations of this xiantian image the central circle is sometimes divided by four lines into eight sectors (fig. 21). These lines function as guides for creating two sine curves with continuously decreasing radius, helping render the trigram code more accurately in the curvilinear mode. In the example illustrated here from 1688, the yin and yang halves join along the dui-gen diagonal.87 Eventually, as knowledge of Western geometry increased, their outline would become a true sine curve that uses the gian-kun or north-south axis as a guide for alignment. In a detailed article explaining the astronomical and mathematical dimensions of circular taiji to Li Shicheng 李仕衡, a Nanjing physics professor, has recently presented the trigonometric decoding of this most accurate diagram (fig. 22).88

Nowadays, one also finds the diagram with the central circle's dividing curve simply constructed from semi-circles. However, this construction is geometrically unrelated to the xiantian trigrams, because the curve does not continually decrease in radius.89 While this design has appeared in decorative contexts since the seventeenth century, its use as a literary diagram is more recent. It has mainly been employed by twentieth-century Western scholars such as Marcel Granet (1884–1940) to explain Chinese cosmological thought (fig. 23). In China, its diagrammatic use is a phenomenon of the late twentieth century: it occurs mostly in connection with the practice of qigong 氣功 and traditional Chinese medicine.90

86 Zhang Huang, Tushu bian (1623), 2:5a. It is theoretically possible to recognize the four xiang in the four design elements that make up the central circle: the two fish shapes and the two central dots. But such an interpretation was apparently not yet envisioned around 1600. Even a hundred years later, Hu Wei still understands the central dots in relation to the trigrams li and kan and interprets them as the sun and the moon which had traditionally been represented by these two trigrams, see Hu Wei, Yitu mingbian, p. 81.
87 Published in the Yijing Lai zhu tujie, where it belonged to one of the additions to Lai Zhide's 来知德 (1525–1604) original work entitled Zhouyi jiehu, first published in 1599. See note 7.
89 For examples, see C.A.S. Williams, Outlines of Chinese Symbolism and Art Motives (rpt. of third revised edition of 1941, Rutland: Tuttle, 1974), pp. 121, 150, 188.
90 Li Shicheng mentions a 1990 publication by an agronomist and qigong adherent named
Fig. 21. “Diagram of the Trigrams Drawn Prior to Heaven,” from Lai Zhide, Yiying Laishe tujia (1688; rpt. Chengdu: Ba Shu shushe, 1988).

It is significant that Zhang Huang placed the *xiantian* diagram (fig. 20) only into the second *juan* of his compendium, while he saw the so-called "Ancient Taiji Diagram" fit for the very beginning as the appropriate first image (fig. 19). The importance that latter image had gained by the early seventeenth century as a universal symbol of creation, as a primal *tu*, could hardly have been stated more explicitly. In Zhang's "Ancient Taiji Diagram" the trigrams appear as small characters, dwarfed by a giant central circle with sharply interlocking black and white halves. The trigrams are still an essential part of the iconography of this image—relevant to maintain the directional positioning, the clockwise rotation, and the two dots near the center of the *taiji* circle—but they are visually subordinate. Moreover, the analytical rigor we saw in the depiction of the *xiantian* diagram's central circle is here sacrificed in favor of a blatantly subjective design. The prominent central circle emphasizes recognizability over mathematical exactness. As a result, it subsumes the full load of associations of the entire diagram into one self-explanatory pictorial symbol.

Three lengthy commentaries celebrate this image. Rather than treating it like a diagram that is part of an argument, these texts discuss the image as a symbol, as an icon that can be interpreted in manifold ways because it functions independently of text. It is described as a symbol of the way to physical as well as moral perfection, as an abstraction of the principle workings of nature and the beginning of all creation. It is also presented as a symbol for the origin of culture, as an image that creates basic insights and thus symbolizes all scholarly pursuit. Two hundred years earlier Zhao Huiqian, in order to claim this image for the Confucian elite, had to connect it to the Song literati's philosophical discourse with diagrams. By Zhang Huang's time, it could be separated from the tradition of intellectual diagrams and be perceived as a timeless symbol. There was no longer a need to explain its uncertain provenance with theories of secret transmission. Rather, it was accepted as a suggestive image which evokes, elucidates, and embodies fundamental cosmological and moral ideas described in the *Yijing* and later reinterpreted and popularized by Song philosophers. One of the commentaries bluntly states that "it is unknown who painted [this image], or under which dynasty this came about. Because it has been circulating for a long time, it is known as the Ancient Taiji Diagram. When looking at the opening passage of the *Xici* commentary in the *Yijing*, this diagram and that text elucidate each other. The passages in the *Shuogua* commentary 'heaven and earth determine the position' and the resulting intermingling are explained by this picture."91

The visual distinction in Zhang Huang's *Tushu bian* between the subjective "Ancient Taiji Diagram" and the objective *xiantian* diagram is paralleled by the differentiation of the origin of the two images. The subjective circle is perceived as a popular symbol of unclear provenance while the analytical circle is traced back as part of the *xiantian* to famous members of the Chinese intelligentsia. Around 1600 scholars were thus increasingly aware of the popular nature of this *taiji* circle and some, such as Zhang Huang, attempted to separate it from traditional Confucian illustrative discourse by treating it as a primary symbol rather than as a diagram. Others, like Lai Zhide, felt the imprecision of this *taiji* ta to be too unsatisfactory and devised more rationally designed versions that became

91 *Tushu bian*, 1:4a.
This paper set out to clarify the provenance of the "taiji tu" by treating its two main components, the "xiantian" trigram circle and the "taiji" circle with its interlocking 'yin' and 'yang' swirls, as separate pictorial entities. This resulted in the following significant conclusions. The "xiantian" trigram circle is not an ancient chart, as is often implied by its association to Fuxi and the "Yijing", but was conceived during the Northern Song period as a result of cosmological and alchemical speculations with numbers and trigrams. It was successfully promoted during the twelfth century by intellectuals of the Neo-Confucian Daoxue school, most effectively Zhu Xi, whose writings secured the ultimate acceptance of this trigram arrangement. There is no evidence throughout the Song period that the circular "xiantian" arrangement was in any way connected to a "taiji" circle with interlocking 'yin' and 'yang' swirls. The earliest known text that illustrates a diagrammatic synthesis of these two entities is the "Liushit beifiyi", an etymological treatise written in the 1370s, but apparently only available now in editions of the early sixteenth century. The book claims that the actual, physical chart it illustrated dated from at least the twelfth century and had passed secretly through the collections of various noted Song and Yuan intellectuals; the image itself, however, was understood as having been invented in archaic times by Fuxi. Thus a myth created during the twelfth century to promote the "xiantian" trigram sequence was appropriated here for a more complex diagram.

Ever since the "taiji" diagram first appeared in the early Ming period, scholars discussed the 'yin-yang' circle not as a later addition to the "xiantian" trigram circle, but as an intrinsic part of it. To Ming and early Qing scholars the image simply presented the information encoded by the trigrams in an alternative visual mode. A look

For further reading, see Lai Zhide, "Yijing Lai zhu tujie" (Chengdu: Ba Shu shushe, 1989), p. 484; Schutz, "Lai Chih-te," pp. 141-68. Interestingly, later interpreters of Lai's work did not make his distinction and hence included the "taiji" diagram into his book, see note 7.
at the pre-Ming history of the yin-yang circle, however, reveals that a diagrammatically abstract image with two swirls of complementary colors and two central dots had not gained any currency. Circular designs with an implied yin-yang symbolism nevertheless existed before the fourteenth century as part of Buddhist or Daoist cosmologies in the form of flaming spheres and atmospheric whirls depicting concentrated, creative energy. Such representational cosmological imagery can be traced back to the ninth century, but it seems to have gained wide recognition only by the thirteenth century. These early designs should not be confused with the taiji circle used since the Ming period in diagrammatic discourse. They should instead be considered as predecessors which paved the way for the conception of a graphic, abstract taiji circle designed like the images of swirling energy. The specific iconography of two antithetical dots near the center and the contrasting colors of this circle were determined by the positions of the surrounding xiantian trigrams. With the acceptance of the taiji diagram as part of the scholarly discourse on cosmology over the course of the Ming period came the recognition of the dynamically divided circle as an iconic symbol. Since the late Ming period design variations of this circle have proliferated in contexts far beyond the confines of Confucian ideology. Today, designs alluding to the taiji circle abound, while their symbolism tends to be far removed from anything we encountered in Ming and early Qing writings. Nevertheless, the popularity of the design would be unthinkable without Ming diagrammatic discourse on cosmology that created and justified the prototype.

The Bible as Chinese Literature: Medhurst, Wang Tao, and the Delegates’ Version

PATRICK HANAN
Harvard University

In China the nineteenth century was one of the great ages of translation. Such ages may occur either when one culture tries to impress itself upon another or, more commonly, when a culture reaches outside itself for new knowledge, and in nineteenth-century China both processes were at work. As the West first impinged on China, it was generally the Westerners who initiated the translation, but later it was more often the Chinese, through institutions like the Jiangnan Arsenal and the Tongwen Guan (College of Foreign Languages), as well as through individuals. But no matter who initiated it, the translation was almost always the work of at least two people, one more familiar with the Western language, the other more skilled in Chinese composition. Such dual or multiple translation could take a variety of forms, depending on how well each translator knew the other’s language as well as on the nature of their relationship.

By far the greatest such enterprise of the century, one initiated by Westerners, was that of Bible translation. Despite the Bible’s challenges—its unparalleled diversity of voices, styles, and forms, as well as a sphere of reference totally unfamiliar to the Chinese—it drew a large number of translators and was rendered into a considerable number of different versions. Both before and after their publication, these versions were subjected to intense criticism. (It

93 For an assembly of illustrations of nineteenth and twentieth century uses of the design, see Li Shicheng, “Lun taiji tu de xingcheng,” 9.